# ECE 307 - Techniques for Engineering Decisions 

3. Introduction to the Simplex Algorithm

## George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

## SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

$\square$ We examine the solution of

$$
\underline{A} \underline{x}=\underline{b}
$$

using Gauss-Jordan elimination
$\square$ We first use a simple example and then generalize to cases of general interest

Consider the system of two equations in five unknowns:

## SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

$S_{1}\left\{\begin{array}{c}x_{1}-2 x_{2}+x_{3}-4 x_{4}+2 x_{5}=2 \\ x_{1}-x_{2}-x_{3}-3 x_{4}-x_{5}=4\end{array}\right.$
$\square$ For this simple example, the number of unknowns exceeds the number of equations and so the system has multiple solutions; this is the principal reason that the $L P$ solution is nontrivial

## SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

$\square$ The Gauss-Jordan elimination uses elementary row operations:

O multiplication of any equation by a nonzero constant

O addition to any equation of a nonzero constant multiple of any other equation

## SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

$\square$ We transform by multiplying equation (i) by -1
and then adding it to equation (ii) so as to zero
out the coefficient of $\boldsymbol{x}_{1}$


## DEFINITIONS

$\square$ A basic variable is a variable $\boldsymbol{x}_{i}$ that appears with the coefficient 1 in an equation and with the coefficient 0 in all the other equations
$\square$ A variable $x_{j}$ that is not basic is called a nonbasic variable
$\square$ In the system $S_{2}, x_{1}$ appears as a basic variable; $x_{2}, x_{3}, x_{4}$ and $x_{5}$ are nonbasic variables
$\square$ Basic variables may be generated through the use of elementary row operations

## DEFINITIONS

A pivot operation is the set of sequential elementary row operations that reduces a system of linear equations into the form in which a specified variable becomes a basic variable
$\square$ A canonical system is a set of linear equations obtained through pivot operations with the property that the system has the same number of basic variables as the number of equations in the set

## CANONICAL SYSTEM FORM

We transform the system $S_{2}$ into the canonical form of system $S_{3}$ :

$$
S_{3}\left\{\begin{array}{rr}
x_{1} & -3 x_{3}-2 x_{4}-4 x_{5}=6 \\
& x_{2}-2 x_{3}+x_{4}-3 x_{5}=2
\end{array}\right.
$$

$\square$ The basic solution is obtained from a canonical system with all the nonbasic variables set to 0
$\square$ For the example, we set $x_{3}=x_{4}=x_{5}=0$ and so

$$
x_{1}=6 \text { and } x_{2}=2
$$

## BASIC FEASIBLE SOLUTION

A basic feasible solution is a basic solution in which
the value of each basic variable is nonnegative
In the example of system $S_{2}$, we may choose any two variables to be basic

In general for a system of $\boldsymbol{m}$ equations in $\boldsymbol{n}$
unknowns there are $\binom{n}{m}$ possible combinations of basic variables

## BASIC FEASIBLE SOLUTION

$\square$ As $n$ increases, the number of combinations
becomes large, even though it remains finite
$\square$ For the example, we have

$$
\binom{5}{2}=\frac{5!}{3!2!}=10
$$

combinations of possible choices

## THE SIMPLEX SOLUTION METHOD

$\square$ We next use a simple example to construct the simplex solution method

The simplex method is a systematic and efficient scheme to examine a subset of the basic feasible solutions of the $L P$ to hone in on an optimal solution

We apply the notions introduced in the definitions we introduced above

## SIMPLEX METHODOLOGY EXAMPLE

$$
\max Z=5 x_{1}+2 x_{2}+3 x_{3}-x_{4}+x_{5}
$$

sot.
canonical $\left\{\begin{array}{l}\boldsymbol{x}_{1}+2 \boldsymbol{x}_{2}+2 \boldsymbol{x}_{3}+\boldsymbol{x}_{4}=\mathbf{8} \\ \text { form } \\ \mathbf{3} \boldsymbol{x}_{1}+\mathbf{4} \boldsymbol{x}_{2}+\boldsymbol{x}_{3}+\boldsymbol{x}_{5}=7\end{array}\right.$

$$
x_{i} \geq 0 \quad i=1, \ldots, 5
$$

## THE SIMPLEX SOLUTION METHOD

The canonical form of the example allows the determination of a basic feasible solution

$$
x_{1}=x_{2}=x_{3}=0 \quad x_{4}=8, x_{5}=7
$$

The corresponding value of the objective is

$$
Z=-8+7=-1
$$

$\square$ The next step is to improve the basic feasible solution and we need to find an adjacent basic feasible solution

## ADJACENT FEASIBLE SOLUTION

$\square$ An adjacent basic feasible solution is one which differs
from the current basic feasible solution in exactly
one basic variable
$\square$ Note, we characterize a basic feasible solution by the
following traits

$$
\begin{array}{r}
\text { basic variable } \geq 0 \\
\text { nonbasic variable }=0
\end{array}
$$

## ADJACENT FEASIBLE SOLUTION

The search for an adjacent basic feasible solution uses the idea to change a nonbasic variable into a basic variable by increasing its value from 0 to the largest positive value without any constraint violations
$\square$ To make the search efficient, we select the nonbasic variable that improves the value of $Z$ by the largest amount for the maximization objective

## ADJACENT FEASIBLE SOLUTION

In the example, consider the nonbasic variable
$x_{1}$, we leave $x_{2}=x_{3}=0$ and examine the
possibility to convert $x_{1}$ into a basic variable
The variable $x_{1}$ enters in both constraints

$$
\begin{aligned}
& x_{1}+x_{4}=8 \\
& 3 x_{1}+\quad x_{5}=7
\end{aligned}
$$

## ADJACENT FEASIBLE SOLUTION

The largest value $x_{1}$ may assume without making either $x_{4}$ or $x_{5}$ negative is

$$
\min \left\{8, \frac{7}{3}\right\}=\frac{7}{3}
$$

$\square$ We have the new basic variable with the value

$$
x_{1}=\frac{7}{3}
$$

and the other basic variable is

$$
x_{4}=\frac{17}{3}
$$

## ADJACENT FEASIBLE SOLUTION

and the three nonbasic variables are set to 0 :

$$
x_{2}=x_{3}=0 \text { and } x_{5}=0
$$

$\square$ Note that we obtain an improvement in $Z$ since its
value becomes

$$
Z=5 \cdot \frac{7}{3}-\frac{17}{3}=\frac{18}{3}=6>-1
$$

$\square$ We next need to put the system of equations into
canonical form:

## SIMPLEX METHODOLOGY EXAMPLE

$$
\begin{aligned}
& \max Z=5 x_{1}+2 x_{2}+3 x_{3}-x_{4}+x_{5} \\
& \text { s.t. }
\end{aligned}
$$

$$
\begin{align*}
& \quad \text { non - }  \tag{*}\\
& \text { canonical } \\
& \text { form } \\
& \text { for } x_{1}
\end{align*}\left\{\begin{array}{l}
x_{1}+2 x_{2}+2 x_{3}+x_{4}=8 \\
3 x_{1}+4 x_{2}+x_{3}+x_{5}=7
\end{array}\right.
$$

$$
x_{i} \geq 0 \quad i=1, \ldots, 5
$$

## ADJACENT FEASIBLE SOLUTION

O multiply equation (**) by $-\frac{1}{3}$ and add to equation (*)

$$
\frac{2}{3} x_{2}+\frac{5}{3} x_{3}+x_{4}-\frac{1}{3} x_{5}=\frac{17}{3}
$$

O multiply equation (**) by $\frac{1}{3}$

$$
x_{1}+\frac{4}{3} x_{2}+\frac{1}{3} x_{3} \quad+\frac{1}{3} x_{5}=\frac{7}{3}
$$

## THE SIMPLEX SOLUTION METHOD

$\square$ We continue this process until the condition of optimality is satisfied:

O in a maximization problem, a basic feasible solution is optimal if and only if the relative profits of each nonbasic variable is $\leq 0$
$O$ in a minimization problem, a basic feasible solution is optimal if and only if the relative
costs of each nonbasic variable is $\geq 0$

## THE SIMPLEX SOLUTION METHOD

$\square$ The relative profits (costs) are given by the change in
$Z$ corresponding to a unit change in a nonbasic
variable
$\square$ We use this fact to select the next nonbasic variable to enter the basis

## SIMPLEX ALGORITHM FOR MAXIMIZATION

Step 1: start with an initial basic feasible solution with
all constraint equations in canonical form

Step 2: check for optimality condition: if the relative profits are $\leq 0$ for each nonbasic variable, then the basic feasible solution is
optimal and stop; else, go to Step 3

## SIMPLEX ALGORITHM FOR MAXIMIZATION

Step 3: select a nonbasic variable to become the new

## basic variable; check the limits on the

 nonbasic variable - the limiting constraint determines which basic variable is replaced by the selected nonbasic variableStep 4: construct the canonical form for the new set of basic variables through elementary row operations; evaluate the basic feasible solution and $Z$ and return to Step 2

## THE SIMPLEX TABLEAU

$\square$ We use an efficient way to represent visually the
steps in the simplex method through a sequence
of so-called tableaus
$\square$ We illustrate the tableau for the simple example
for the initial basic feasible solution

## THE SIMPLEX TABLEAU

| coefficients of thebasic variables in $Z$$\quad$ coefficient of $x_{j}$ in $Z$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{c_{j}}$ | 5 | 2 | 3 | -1 | 1 | constraint constants |
|  | variables | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| -1 | $x_{4}$ | 1 | 2 | 2 | 1 |  | 8 |
| 1 | $x_{5}$ | 3 | 4 | 1 |  | 1 | 7 |

ECE 307 © 2006 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

## THE SIMPLEX TABLEAU

The optimality check requires the evaluation of

$$
\tilde{c}_{j}=c_{j}-\left(\begin{array}{lc}
\underline{c}_{B}^{T} & \text { column corresponding } \\
\text { to } x_{j} \text { in canonical form }
\end{array}\right)
$$

For each nonbasic variable $x_{j}$, for our example, we have

$$
\begin{aligned}
& \tilde{c}_{1}=5-[-1,1] \cdot\left[\begin{array}{l}
1 \\
3
\end{array}\right]=3 \\
& \tilde{c}_{2}=2-[-1,1] \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right]=0 \\
& \tilde{c}_{3}=3-[-1,1] \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]=4
\end{aligned}
$$

## THE SIMPLEX TABLEAU

$\square$ We interpret each $\tilde{c}_{j}$ as the change in $Z$ in response to a unit increase in $\boldsymbol{x}_{\boldsymbol{j}}$

| $\underline{\underline{c}}_{B}$ |  | 5 | 2 | 3 | - 1 | 1 | constraint constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| -1 | $x_{4}$ | 1 | 2 | 2 | 1 |  | 8 |
| 1 | $x_{5}$ | 3 | 4 | 1 |  | 1 | 7 |
| $\underline{\underline{\underline{a}}}^{\text {r }}$ |  | 3 | 0 | 4 | 0 | 0 | $Z=-1$ |

## SIMPLEX TABLEAU

$\square$ Note that the optimality test indicates that

$$
\tilde{c}_{1}=3>0 \quad \text { and } \quad \tilde{c}_{3}=4>0
$$

and so the initial basic feasible solution is not optimal
$\square$ Since $\tilde{c}_{3}>\tilde{c}_{1}$, we pick $x_{3}$ as the nonbasic variable to become a basic variable
$\square$ We examine the limiting solution for $x_{3}$ in the two constraint equations:

## THE SIMPLEX TABLEAU

| equation | limiting basic <br> variable | upper limit on $x_{3}$ |
| :---: | :---: | :---: |
| 1 | $x_{4}$ | $(8 / 2)=4$ |
| 2 | $x_{5}$ | $(7 / 1)=7$ |

and so the limiting value is

$$
\min \{4,7\}=4
$$

$\square$ We replace the basic variable $x_{4}$ by $x_{3}$

## SIMPLEX METHODOLOGY EXAMPLE

$$
\max Z=5 x_{1}+2 x_{2}+3 x_{3}-x_{4}+x_{5}
$$

$$
s . t
$$

$$
\begin{align*}
& \underset{x_{4}}{\text { form }} \begin{array}{l}
\text { in } \\
x_{4} \text { and } x_{5}
\end{array}\left\{\begin{array}{l}
x_{1}+2 x_{2}+2 x_{3}+x_{4}=8 \\
3 x_{1}+4 x_{2}+x_{3}+x_{5}=7 \\
x_{i} \geq 0 \quad i=1, \ldots, 5
\end{array}\right. \tag{*}
\end{align*}
$$

## THE SIMPLEX TABLEAU

For the new basic feasible solution, we put the equations into canonical form

O multiplying (*) by $\frac{1}{2}$ to produce (* $\dagger$ )
O subtract $\left({ }^{*} \dagger\right)$ from $(* *)$ to produce $(* * \dagger)$

$$
\begin{aligned}
& \frac{1}{2} x_{1}+x_{2}+x_{3}+\frac{1}{2} x_{4}=4\left(^{* \dagger)}\right. \\
& \frac{5}{2} x_{1}+3 x_{2}-\frac{1}{2} x_{4}+x_{5}=3(* * \dagger)
\end{aligned}
$$

$\square$ The adjacent basic feasible solution is

$$
x_{1}=x_{2}=x_{4}=0 \quad x_{3}=4, \quad x_{5}=3
$$

## THE SIMPLEX TABLEAU

| $\underline{\boldsymbol{c}}_{B}$ |  | 5 | 2 | 3 | -1 | 1 | constraint constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| 3 | $x_{3}$ | 1/2 | 1 | 1 | 1/2 |  | 4 |
| 1 | $x_{5}$ | 5/2 | 3 |  | -1/2 | 1 | 3 |
| $\underline{\underline{\boldsymbol{c}}}^{T}$ |  | 1 | -4 | 0 | -2 | 0 | $Z=15$ |

## THE SIMPLEX TABLEAU

$\square$ Since $\tilde{c}_{1}>0$, the basic feasible solution is nonoptimal
$\square$ We examine how to bring $x_{1}$ into the basis

| equation | limiting basic <br> variable | upper limit on <br> $x_{1}$ |
| :---: | :---: | :---: |
| $(* \dagger)$ | $x_{3}$ | $4 /(1 / 2)=8$ |
| $(* * \dagger)$ | $x_{5}$ | $3 /(5 / 2)=6 / 5$ |

## THE SIMPLEX TABLEAU

$\square$ The variable $x_{1}$ enters the basis with the value

$$
\min \left\{8, \frac{6}{5}\right\}=\frac{6}{5}
$$

and $x_{5}$ is replaced as a basic variable by $x_{1}$
$\square$ We need to put the equations

$$
\begin{aligned}
& \frac{1}{2} x_{1}+x_{2}+x_{3}+\frac{1}{2} x_{4}=4(* \dagger) \\
& \frac{5}{2} x_{1}+3 x_{2}-\frac{1}{2} x_{4}+x_{5}=3(* * \dagger)
\end{aligned}
$$

## THE SIMPLEX TABLEAU

$\square$ The following elementary row operations are used

O multiply $(* * \dagger)$ by $-1 / 5$ and add to $(* \dagger)$

$$
\frac{2}{5} x_{2}+x_{3}+\frac{3}{5} x_{4}-\frac{1}{5} x_{5}=\frac{17}{5}
$$

O multiply $(* * \dagger)$ by $\mathbf{2 / 5}$

$$
x_{1}+\frac{6}{5} x_{2} \quad-\frac{1}{5} x_{4}+\frac{2}{5} x_{5}=\frac{6}{5}
$$

and construct the corresponding tableau

## THE SIMPLEX TABLEAU

| $\underline{\boldsymbol{c}}_{\boldsymbol{B}}$ | $c_{j}$ | 5 | 2 | 3 | -1 | 1 | constraint <br> constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | variables | $x_{1}$ | $x_{2}$ | $\boldsymbol{x}_{3}$ | $\boldsymbol{x}_{4}$ | $x_{5}$ |  |
| 3 | $x_{3}$ |  | 2/5 | 1 | 3/5 | - 1/5 | 17/5 |
| 5 | $x_{1}$ | 1 | 6/5 |  | - 1/5 | 2/5 | 6/5 |
| $\underline{\boldsymbol{c}}^{T}$ |  | 0 | - 26/5 | 0 | -9/5 | - 2/5 | $Z=81 / 5$ |
| $\tilde{c}_{j} \leq 0$ implies optimality $\quad 16.2>15$ |  |  |  |  |  |  |  |

## SIMPLEX TABLEAU EXAMPLE

$$
\begin{aligned}
\max Z= & 3 x_{1}+2 x_{2} \\
\text { s.t. } & -x_{1}+2 x_{2} \leq 4 \\
& 3 x_{1}+2 x_{2} \leq 14 \\
& x_{1}-x_{2} \leq 3 \\
& x_{1} \geq 0 \quad x_{2} \geq 0
\end{aligned}
$$

## SIMPLEX TABLEAU EXAMPLE

$\square$ We put this problem into standard form:

```
\(\max Z=3 x_{1}+2 x_{2}\)
```

s.t.
$-x_{1}+2 x_{2}+x_{3}$
$3 x_{1}+2 x_{2}$
$x_{1}-x_{2}$
$+x_{4}$
canonical form
$x_{1}, \ldots, x_{5} \geq 0$
$\square x_{3}, x_{4}, x_{5}$ are fictitious variables

## SIMPLEX TABLEAU EXAMPLE

| $\underline{\underline{c}}_{B}$ | $\underbrace{}_{i} c_{j}$ | 3 | 2 | 0 | 0 | 0 | constraint <br> constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $\boldsymbol{x}_{3}$ | $x_{4}$ | $x_{5}$ |  |
| 0 | $x_{3}$ | -1 | 2 | 1 |  |  | 4 |
| 0 | $x_{4}$ | 3 | 2 |  | 1 |  | 14 |
| 0 | $x_{5}$ | 1 | - 1 |  |  | 1 | 3 |
|  | $\underline{\underline{\underline{a}}}^{T}$ | 3 | 2 | 0 | 0 | 0 | $Z=0$ |

## SIMPLEX TABLEAU EXAMPLE

$\square$ The data in $\tilde{\boldsymbol{c}}^{T}$ indicate that the highest relative profits correspond to $x_{1}$ and so we want to make $x_{1}$ to become a basic variable
$\square$ To bring $x_{1}$ into the basis requires to evaluate

$$
\min \left\{\infty, \frac{14}{3}, 3\right\}=3
$$

and so $x_{1}$ replaces $x_{5}$ with the value 3
$\square$ We evaluate the basic variable at the adjacent basic feasible solution and convert into canonical form; the new tableau becomes

[^0]
## SIMPLEX TABLEAU EXAMPLE

| $\underline{\underline{c}}_{B}$ |  | 3 | 2 | 0 | 0 | 0 | constraint <br> constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| 0 | $x_{3}$ |  | 1 | 1 |  | 1 | 7 |
| 0 | $x_{4}$ |  | 5 |  | 1 | -3 | 5 |
| 3 | $x_{1}$ | 1 | - 1 |  |  | 1 | 3 |
|  | $\underline{\underline{\underline{c}}}^{\text {r }}$ | 0 | 5 | 0 | 0 | -3 | $Z=9$ |

## SIMPLEX TABLEAU EXAMPLE

## $\square$ We reproduce here the calculation of the $\underline{\tilde{c}}^{T}$

components

$$
\tilde{c}_{j}=c_{j}-\left(\underline{c}_{B}^{T} \cdot \text { column corresponding to } x_{j}\right)
$$

for each nonbasic variable $\boldsymbol{x}_{\boldsymbol{j}}$
$\square$ Note that, by definition, $\tilde{c}_{i}=0$ for each basic
variable $\boldsymbol{x}_{\boldsymbol{i}}$

## SIMPLEX TABLEAU EXAMPLE

## $\square$ The calculations give

$\tilde{c}_{1}=0$ by definition since $x_{1}$ is in the basis
$\tilde{c}_{2}=2-\left[\begin{array}{lll}0 & 0 & 3\end{array}\right]\left[\begin{array}{r}1 \\ 5 \\ -1\end{array}\right]=5-\begin{gathered}\text { indicates possible } \\ \text { improvement }\end{gathered}$
$\tilde{\boldsymbol{c}}_{3}=0$ by definition since $x_{3}$ is in the basis
$\tilde{c}_{4}=0$ by definition since $x_{4}$ is in the basis
$\tilde{\boldsymbol{c}}_{5}=0-\left[\begin{array}{lll}0 & 0 & 3\end{array}\right]\left[\begin{array}{c}\mathbf{1} \\ -\mathbf{3} \\ 1\end{array}\right]=-\mathbf{3}$

## SIMPLEX TABLEAU EXAMPLE

$\square$ Clearly, the only choice is to get $x_{2}$ into the basis and so we need to establish the limiting condition from the three equations by evaluating

$$
\min \{7,1, \infty\}=1
$$

and so $x_{2}$ replaces $x_{4}$, which becomes a nonbasic variable
$\square$ We need to rewrite the equations into canonical form for $x_{3}$ and $x_{2}$ and construct the new tableau

[^1]
## SIMPLEX TABLEAU EXAMPLE



## SIMPLEX TABLEAU EXAMPLE

## An optimum is at the solution of

$\left.\begin{array}{rl}x_{3} & -\frac{1}{5} x_{4}+\frac{8}{5} x_{5}=6 \\ x_{1} & +\frac{1}{5} x_{4}-\frac{2}{5} x_{5}=1 \\ & +\frac{1}{5} x_{4}+\frac{2}{5} x_{5}=4\end{array}\right\}\left\{\begin{array}{l}\text { an } \\ 0\end{array}\right.$

## SIMPLEX TABLEAU EXAMPLE

$\square$ This optimum is given by

$$
\begin{aligned}
& x_{4}=x_{5}=0 \\
& x_{3}=6 \\
& x_{2}=1 \\
& x_{1}=4
\end{aligned}
$$

## LINEAR PROGRAMMING EXAMPLE

## $\square$ Consider the following $L P$

$$
\begin{aligned}
\max Z & =3 x_{1}+2 x_{2} \\
\text { s.t. } & -x_{1}+2 x_{2} \leq 4 \\
& 3 x_{1}+2 x_{2} \leq 14 \\
& x_{1}-x_{2} \leq 3 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

## LINEAR PROGRAMMING EXAMPLE



## LINEAR PROGRAMMING EXAMPLE

$\square$ The tableau approach leads to $C$ which is an optimal solution with

$$
x_{1}=4, x_{2}=1, x_{3}=6, x_{4}=0, x_{5}=0
$$

$\square$ Note that any point along $C D$ has $Z=14$ and as such $D$ is another optimal solution corresponding to an adjacent basic feasible solution
$\square$ We may obtain $D$ from $C$ by bringing into the basis the nonbasic variable $x_{5}$ in Tableau 3; note that $\tilde{c}_{5}=0$

## LINEAR PROGRAMMING EXAMPLE

We may choose $x_{5}$ as a basic variable without affecting $Z$ since the relative profits are 0 ; we
compute the limiting value of $\boldsymbol{x}_{5}$
The limit is imposed by $x_{3}$ which, consequently,
leaves the basis

The corresponding tableau is:

## LINEAR PROGRAMMING EXAMPLE

| $\underline{\underline{c}}_{B}$ | $\begin{array}{\|c} c_{j} \\ \text { basic } \\ \text { variables } \end{array}$ | 3 | 2 | 0 | 0 | 0 | constraint <br> constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| 0 | $x_{3}$ |  |  | 5/8 | -1/8 | 1 | 15/4 |
| 2 | $x_{2}$ |  | 1 | 3/8 | 1/8 |  | 13/4 |
| 3 | $x_{1}$ | 1 |  | -1/4 | 1/4 |  | 5/2 |
|  | $\underline{\tilde{\boldsymbol{c}}}^{T}$ | 0 | 0 | 0 | -1 | 0 | $Z=14$ |

ECE 307 © 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

## LINEAR PROGRAMMING EXAMPLE

$\square$ The adjacent feasible solution is given by

$$
x_{1}=\frac{5}{2}, x_{2}=\frac{13}{4}, x_{3}=x_{4}=0, x_{5}=\frac{15}{4}
$$

$\square$ Note that at this basic feasible solution,

$$
\tilde{c}_{j} \leq 0 \quad \forall j
$$

and so this is also an optimal solution

## ALTERNATE OPTIMAL SOLUTION

In general, an alternate optimal solution is indicated
whenever there exists a nonbasic variable $x_{j}$ with $\tilde{c}_{j}=0$
in an optimal tableau; such a situation points to a
non unique optimum for the $L P$

## MINIMIZATION $L P$

## $\square$ Consider a minimization $L P$ with the form given

by

$$
\begin{array}{ll}
\min & Z=\sum_{i=1}^{n} c_{i} x_{i} \\
\text { s.t. } & \underline{A} \underline{x}=\underline{b} \\
& \underline{x} \geq \underline{0}
\end{array}
$$

## MINIMIZATION $L P$

We replace the optimality check in the simplex
scheme by:
if each coefficient $\tilde{c}_{j}$ is $\geq 0$, stop; else, select
the nonbasic variable with the most negative
valued $\underline{\tilde{c}}$ component to become the new basic

## variable

## MINIMIZATION $L P$

$\square$ Every minimization $L P$ may be solved as a maximization $L P$ because of equivalence

$$
\begin{array}{llll}
\min & \boldsymbol{Z}=\underline{c}^{T} \underline{\boldsymbol{x}} & \max & \mathbb{Z}^{\prime}=\left(-\underline{c}^{T}\right) \underline{x} \\
\text { s.t. } & \text { s.t. } & \\
& \underline{A} \underline{x}=\underline{b} & & \underline{A} \underline{x}=\underline{b} \\
& \underline{x} \geq \underline{0} & & \underline{x} \geq \underline{0}
\end{array}
$$

with the solutions of $Z$ and $Z^{\prime}$ related by

$$
\min \{Z\}=-\max \left\{Z^{\prime}\right\}
$$

## COMPLICATIONS IN THE SIMPLEX METHODOLOGY

$\square$ Two variables $x_{j}$ and $x_{k}$ are tied in the selection of the nonbasic variable to replace a current basic variable when $\tilde{c}_{j}=\tilde{c}_{k}$; the choice of the new nonbasic variable to enter the basis is arbitrary
$\square$ Two or more constraints may give rise to the same minimum ratio value in selecting the basic variable to be replaced
$\square$ We consider the example of the following tableau

## COMPLICATIONS IN THE SIMPLEX METHODOLOGY

| $\underline{\boldsymbol{c}}_{B}$ |  | 0 | 0 | 0 | 2 | 0 | 3/2 | constraint constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |  |
| 0 | $\boldsymbol{x}_{1}$ | 1 |  |  | 1 | -1 | 0 | 2 |
| 0 | $x_{2}$ |  | 1 |  | 2 | 0 | 1 | 4 |
| 0 | $x_{3}$ |  |  | 1 | 1 | 1 | 1 | 3 |
|  | $\underline{\tilde{c}}^{\text {r }}$ | 0 | 0 | 0 | 2 | 0 | 3/2 | $Z=0$ |

candidate for basic variable

# COMPLICATIONS IN THE SIMPLEX METHODOLOGY 

O in selecting the nonbasic variable $\boldsymbol{x}_{4}$ to enter the basis, we observe that the first two constraints give the same minimum ratio: this means that when $x_{4}$ is first increased to 2 , both the basic variables $x_{1}$ and $x_{2}$ will reduce to 0 even though only one of them can become a nonbasic variable

O we arbitrarily decide to remove $x_{1}$ from the basis to get the new basic feasible solution:

## COMPLICATIONS IN THE SIMPLEX METHODOLOGY

| $\underline{\boldsymbol{c}}_{B}$ |  | 0 | 0 | 0 | 2 | 0 | 3/2 | constraint constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |  |
| 2 | $\boldsymbol{x}_{4}$ | 1 |  |  | 1 | - 1 |  | 2 |
| 0 | $x_{2}$ | -2 | 1 |  |  | 2 | 1 | 0 |
| 0 | $x_{3}$ | -1 |  | 1 |  | 1 | 1 | 1 |
|  | $\underline{\tilde{c}}^{\text {T }}$ | -2 | 0 | 0 | 0 | 0 | 3/2 | $Z=4$ |

## COMPLICATIONS IN THE SIMPLEX METHODOLOGY

$O$ in the new basic feasible solution

$$
x_{1}=0, \quad x_{2}=0, \quad x_{3}=1, \quad x_{4}=2, \quad x_{5}=0, \text { and } x_{6}=0 ;
$$

we treat $x_{2}$ as a basic variable whose value is 0 ,
the same as if it were a nonbasic variable

## DEGENERACY

$\square$ A degenerate basic feasible solution is one which has one or more basic variables with the value 0
$\square$ Degeneracy may lead to a number of complications in the simplex approach: an important implication is a minimum ratio of 0 , so that no new nonbasic variable may be included in the basis and therefore the basis remains unchanged
$\square$ We consider the following example tableau

## COMPLICATIONS IN THE SIMPLEX METHODOLOGY

| $\underline{c}_{B}$ | $c_{j}$ | 0 | 0 | 0 | 2 | 0 | 3/2 | constraint constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | variables | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ |  |
| 2 | $\boldsymbol{x}_{4}$ |  | 1/2 |  | 1 |  | 1/2 | 2 |
| 0 | $x_{5}$ | - 1 | 1/2 |  |  | 1 | 1/2 | 0 |
| 0 | $x_{3}$ | 1 | - 1 | 1 |  |  | 0 | 1 |
|  | $\underline{\underline{\underline{a}}}^{\text {r }}$ | 0 | - 1 | 0 | 0 | 0 | 1/2 | $Z=4$ |

## DEGENERACY

the logical choice being the nonbasic variable $x_{6}$ to enter the basis; this leads to finding the limiting constraint from two equations

$$
\begin{aligned}
& \frac{1}{2} x_{6}=2-x_{4} \\
& \frac{1}{2} x_{6}=0-x_{5}
\end{aligned}
$$

and no constraint in the third equation; thus

$$
x_{6}=\min \{4,0, \infty\}
$$

## DEGENERACY

## Degeneracy may result in the construction of new

 tableaus without improvement in the objective function value, thereby reducing the efficiency of the computations: theoretically, an infinite loop, the so-called cycling, is possibleWhenever ties occur in the minimum ratio rule, an arbitrary decision is made regarding which basic variable is replaced, ignoring the theoretical consequences of degeneracy and cycling

[^2]
## MINIMUM RATIO RULE COMPLICATIONS

$\square$ The minimum ratio rule may not be able to determine the basic variable to be replaced: this is the case when all equations lead to $\infty$ as the limit
$\square$ Consider the example and corresponding tableau
$\max \quad Z=2 x_{1}+3 x_{2}$ s.t.

$$
\begin{array}{rlrl}
x_{1}-x_{2}+x_{3} & =2 \\
-3 x_{1}+x_{2} & & +x_{4} & =4 \\
x_{i} & \geq 0, \quad i & =1, \ldots, 4
\end{array}
$$

## MINIMUM RATIO RULE COMPLICATIONS

| $\underline{\underline{c}}^{\text {B }}$ | ${\underset{\text { basic }}{j}}^{c_{j}} \begin{aligned} & \text { variables } \end{aligned}$ | 2 | 3 | 0 | 0 | constraint <br> constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ |  |
| 0 | $x_{3}$ | 1 | - 1 | 1 |  | 2 |
| 0 | $x_{4}$ | -3 | 1 |  | 1 | 4 |
|  | ${\underline{\tilde{\underline{c}}}{ }^{T}}^{\text {r }}$ | 2 | 3 | 0 | 0 | $Z=0$ |

$\square$ The nonbasic variable $x_{2}$ enters the basis to replace $x_{4}$ and the new tableau is

## MINIMUM RATIO RULE COMPLICATIONS

| $\underline{c}_{\boldsymbol{c}}^{\text {B }}$ | $c_{j}$ <br> basic variables | 2 | 3 | 0 | 0 | constraint <br> constants |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\boldsymbol{x}_{4}$ |  |
| 0 | $x_{3}$ | -2 |  | 1 | 1 | 6 |
| 3 | $x_{2}$ | -3 | 1 |  | 1 | 4 |
| $\underline{\underline{c}}^{\text {T }}$ |  | 11 | 0 | 0 | -3 | $Z=12$ |

$\square$ We select $x_{1}$ to enter the basis but we are unable to get limiting constraints from the two equations

## MINIMUM RATIO RULE COMPLICATIONS

$$
\begin{array}{ll}
-2 x_{1}+x_{3}=6 & x_{1}=\frac{1}{2} x_{3}-3 \\
-3 x_{1}+x_{2}=4 & x_{1}=\frac{1}{3} x_{2}-\frac{4}{3}
\end{array}
$$

$\square$ In fact, as $x_{1}$ increases so do $x_{2}$ and $x_{3}$ and $Z$ and therefore, the solution is unbounded
$\square$ The failure of the minimum ratio rule to result in a bound at any simplex tableau implies that the problem has an unbounded solution


[^0]:    ECE 307 © 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

[^1]:    ECE 307 © 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

[^2]:    ECE 307 © 2006-2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

